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SUMMARY 

The time-split finite element method is extended to compute laminar and turbulent flows with and 
without separation. The examples considered are the flows past trailing edges of a flat plate and a 
backward-facing step. Eddy viscosity models are used to represent effects of turbulence. It is found that 
the time-split method produces results in agreement with previous experimental and computational 
results. The eddy viscosity models employed are found to give accurate predictions in all regions of flow 
except downstream of reattachment. 
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1. INTRODUCTION 

A time-split finite element method was introduced and applied to compute laminar separated 
flows.' This method, which can also be interpreted as an alternating direction implicit finite 
element method, is well suited to compute steady flows by an unsteady approach. Although 
both laminar and turbulent flows are considered in the present work, more emphasis is given 
to  the computation of turbulent flows. The results reported here are part of a computational 
investigation of complex trailing-edge flows such as the flow behind an aerofoil. 

In the present work, we have two objectives. First, to introduce the simplest model for the 
Reynolds stresses that can accurately predict gross features of a turbulent flow. For the flow 
over an aerofoil a typical gross feature of interest would be the modification of the body 
pressure distribution by the separated region. For the problems considered here we will be 
interested in such gross features as the mean velocity profiles and the length of the separated 
region but will not attempt to  determine details of the turbulence structure. Thus an 
algebraic eddy viscosity model has been employed to  represent effects of turbulence; its 
suitability to  compute the flows of interest is discussed in the text. Second, we are interested 
in modelling the trailing edge flow problems but with geometric characterizations that allow 
a simple prescription of boundary conditions. To achieve these objectives we compute two 
flows-the flow past the trailing edge of a flat plate, typical of an unseparated flow, and the 
flow past a backward-facing step, typical of a separated flow. These examples, which can be 
considered standard, have received considerable attention in the past. These include the 
experiments of Chevray and Kovasznay Andreopoulos and Bradshaw3 and computations of 
Viswanath et aL4 for the flow past a flat plate. The work of Bradshaw and Wong,' 
Chandrasuda and Bradshaw,6 Sinha et aL7 are some of the recent experimental investigations 
of the flow past a backward-facing step. 

The structure of the rest of this paper is as follows. The governing equations, the time-split 
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finite element method and the eddy viscosity model are described in Section 2. The specific 
problems considered, the appropriate boundary conditions and other computational details, 
such as mesh geometry and law of the wall, are explained in Section 3.  The various velocity 
profiles, pressure distributions and shear stress profiles are presented and discussed in 
Section 4. 

2. GOVERNING EQUATIONS, COMPUTATIONAL 
ALGORITHM AND EDDY VISCOSITY MODEL 

2.1. Governing equations 

compressible Navier-Stokes equations 
The flows under consideration are assumed to be governed by the two-dimensional, 

(1) 
aq aF aG a2R a2S a2T 

+2 a t  ax ay ax2 axay ay 

4 = {P, PU, P I  
F = {pu, p + pu2 - ux, puv - rxy) 

-+-+-=-+- 

where 

- I XI s =  0 , - v - u  

p = density, u, v =velocity components in x and y directions, p =pressure, a,, uy, rxy = 
Reynolds stresses, p = molecular viscosity, E = eddy viscosity (see Section 2.3 for details). 

The dissipative terms in the continuity equation O:p (non-dimensional 8 = 10/Re), are 
included to stabilize the numerical procedure. The present method is being developed for 
transonic flows where we do not expect the temperature gradients to be large. Hence 
molecular viscosity, p is assumed to  be constant. 

It is further assumed that the temperature can be related to the velocity by 

so that the energy equation need not be solved. In equation (4), C,, = specific heat at constant 
pressure, To = stagnation temperature. 

When equation (4) is combined with the ideal gas law, we get for the pressure, 

I Y - 1  
(5 )  

where R, = universal gas constant, y = ratio of specific heats. 
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Equation (5) ,  which is exact for inviscid flows, is applicable to viscous flows when the 
Prandtl number is unity and there is no heat transfer at the body surface. 

Equations (1)-(5) are non-dimensionalized with free stream values of density p,, velocity 
U,, and a characteristic length L. The governing equations retain the same form but for the 
following changes. 1/Re replaces F where Re = p,UJ,/p. 

The pressure equation, when non-dimensionalized, becomes 

1+yM2p=p{l+O-S(y- ~ ) M , ( ~ - U ~ - V * ) }  (6) 

where M, is the free stream Mach number. 

2.2. Time-split finite element method 

The time-split finite element method has been described in detail in Reference 1; here we 
give only the outline of the method. When we apply a Galerkin finite element formulation 
with linear, rectangular elements to the non-dimensional form of (1) we obtain the following 
system of ordinary differential equations, 

k = i - 1, i, i + 1 and 1 = j - 1, j ,  j + 1 (see Figure 1). 4 has components (&)i,j, (@u)~,~} after 
mass lumping. In equation (7) terms like are the nodal values of S. The coefficients f, g, r 
depend only on the element geometry. 

It may be noted that in forming equation (7), trial solutions have been assumed for groups 
of terms like puv that arise from the non-dimensional version of equation (1). It is shown by 
Fletcher’ that the group finite element formulation’ leads to significant gains in economy, 
without sacrificing accuracy. For the two-dimensional Burgers’ equation solved by a time- 
split method with linear elements a reduction in execution times by a factor of 2 is achieved 
by the group formulation in comparison with the conventional finite element treatment of 
the convective terms. 

Whereas the convective terms for Burgers’ equation are quadratically non-linear, for 
compressible flow the non-linearity is cubic. For two-dimensional, compressible flow it is 
estimated’ that the group formulation is approximately ten to fifteen times more economical 
than the conventional finite element method. 

i -  
j 

i - 1  i 
.i t 1 j t l  

i t  1 
j t 1  

i t 1  
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Figure 1. Nodal geometry 
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An AD1 scheme is employed to solve the equations (7) 
cj*-ij" +0.5 At[C+ G;'- RT- S; - T;]= 0 

qn+l-q*+0,5 A ~ [ F T + G : + ~ - R ~ -  s*- 1 '  Tn+l]=0 (9) 

where FT represents x k , l  fk,lF?, etc. 
It is necessary to introduce a linearization about the current time level if the tridiagonal 

algorithm is to be used to solve the above equations. This is carried out following Briley and 
McDonald." Terms such as (pu2)"+lare replaced by 

pn+'(uZ)n + un+l2(pu)" -2(pu')" (10) 

The solution has been sought as correction to the current solution p", u", v". The 
expressions such as (10) are replaced by 

Ap"+'(u2)" + Aun+12(pu)" + (pu')" (11) 

equations (8) and (9) are thus written as 

(P + A:!Ap* = -0.5 AtRz  

(H*+A;)Ap"+l=-0.5 AtRz (13) 

where Ap = {Ap, AM, Au}. H contains the contributions from the finite difference representa- 
tion of q. A, and A, are the contributions from the spatial terms such as 2(pu) that multiply 
the implicit terms in (11). R, is the residual of all spatial terms and approaches zero as the 
steady state is approached. This provides a convenient measure of the 'closeness' of the 
solution to the converged solution. 

It can be shown that the method described is fourth-order accurate in space on a uniform 
grid for the inviscid terms.' It does not introduce any error other than that inherent in the 
finite element method. Further, the time-split method has the advantage that it allows the 
use of the efficient tridiagonal algorithm and that the demand on memory is modest. The 
stability properties of the method have been discussed in Reference 1. 

2.3. Eddy viscosity model 

The suitability of eddy viscosity models to compute turbulent flows has often been 
questioned. Although it is clear that the models cannot compute details of the turbulence 
structure, the previous applications do indicate that the models can, in fact, compute gross 
features of a flow quite satisfactorily.".12 Our interest is mainly in such gross features as the 
mean velocity profiles and skin friction distribution; eddy viscosity models are expected to be 
adequate for this purpose. However, doubts are often expressed as to whether eddy viscosity 
models can predict satisfactorily even the gross features of separated flow. One of the 
problems considered, i.e. flow past a backward-facing step involves a separated flow region as 
well as a reattaching region. Therefore it serves as a good example to test the eddy viscosity 
models for complex turbulent flows. The eddy viscosity model employed is as follows. 

Boundary layers. Inner region 
q = pkTy'D2 luyl (14) 

(15) 

where k ,  is the von Karman constant (0.41) and D is the van Driest damping factor: 

D = 1 -exp [ -y(~, /p , )~"/26v,]  
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Outer region 
~o = kzPUrnax a * ~  (16) 

where k = 0.0168, y = [1+ 5 . 5 ( ~ / F ) ~ ] - ~  (intermittency), 6* = j:& (1 - pu/(pU),,) dy, yds = y 
coordinate of the dividing streamline (for a boundary layer, yds = ywan). 

Wakes. The same formulation as for the outer region of the boundary layer is used. 
Further, a simple relaxation procuedure is employed to approximate the influence of 
upstream history and is described later. 

Separated region. The model used in the separated region follows the one suggested by 
Deiwert.13 The value of the eddy viscosity in the separated region is interpolated between 
the wall and the dividing streamline and is damped using the Van Driest damping factor. 

E, = burnax S*{(Y/Y~D) (17) 
(18) D = 1 -exp {-y(~,Ip~)~'~/261r,} 

yds = dividing streamline, D = Van Driest damping factor. 
It was found during computations that the eddy viscosity distribution was discontinuous at 

the boundaries when the above formulations were employed for the flow past a backward- 
facing step. This was particularly so at the rearward end of the separation bubble. However 
the relaxation carried out on the eddy viscosity distribution to take into account the 
upstream history effects of turbulence ensured a smoother distribution at the boundaries. 

Relaxation. It is well known that in regions downstream of a flat plate and downstream of 
a step, turbulence is not in local equilibrium. With eddy viscosity models it is usual to take 
into account the upstream history of turbulence by carrying out a relaxation. In the present 
investigations the relaxation was carried out by the following formula 

Ei,j = (YE;,* + (1 - a)Ei,j (19) 

In (19) Ei,j is the eddy viscosity value given by the equations (14) to (18) and is the value 
at an upstream location. The upstream location, k, l was located by tracing back along the 
velocity vector at the point (i, j ) .  The value of eddy viscosity at this upstream location was 
obtained by a linear interpolation among the four corners of the element in which the 
upstream point was situated. This is consistent with the use of linear shape functions to 
derive equations (7). The relaxation parameter a was chosen to be 0.3 as is the usual 
practice." 

3 .  PROBLEMS CONSIDERED, BOUNDARY CONDITIONS 
AND COMPUTATIONAL DETAILS 

3.1. How past the trailing edge of a flat plate 

We consider a flat plate which separates two streams. Downstream of the trailing edge the 
boundary layers from the two sides of the plate merge and a wake flow results. Depending 
upon the flow on either side of the plate the wake may be symmetric or asymmetric about its 
centre line. Both symmetric and asymmetric wakes are considered in the present study. 
Asymmetry may be a result of the free-stream velocities being different on the two sides of 
the plate or it may be due to the wall roughness being different on the two sides of the plate 
(Figure 2). We call these 'velocity asymmetry' and 'roughness asymmetry' respectively. The 
various cases of laminar and turbulent wakes considered are given in Table I. 
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Figure 2.  Boundary conditions and computational details for flow past trailing-edge of a flat plate (not to scale) 

3.1.1. Boundary conditions. The boundary conditions applied are as follows (Figure 2): 
On AB 

u = u = o  (20) 

On CD, the velocity components u and u are specified. Pressure is calculated from the 
extrapolation of the outgoing characteristic variable14 

where c is the speed of sound. 

1.0. 
On DE, FC values of p, u are prescribed at their non-dimensional free stream values, i.e. 

On EF, being an outflow boundary, the following conditions on u and u are applied 

Table I. Examples considered for the flow past the trailing edge of a flat plate; Mach 
number in each case was 0.4. Refer to Figure 2 for a description of symbols 

Laminar Turbulent 

Example ReL VIm/U2, Cf,/cf, ReL UdU, ,  Cf,/c,, 
~ ~ ~ 

Symmetric wake 100 1.0 1.0 10" 1 .o 1.0 
Asymmetric wake 100 0.8 1.0 1 o6 0.8 1.0 

Asymmetric wake 1 0" 1 .o 2.0 
(velocity) 

(roughness) 
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and pressure is calculated from the non-reflecting condition 

A detailed discussion of this non-reflecting boundary condition is available in Reference 14. 
One of the important properties of this condition is that it reduces reflections at the outflow 
boundary of spurious disturbances generated by the transient solution. Consequently a faster 
convergence is achieved. In the same study it is found that P = 0.3 gives good results and is 
therefore used in the present work. 

3.1.2. Computational details. The flow was computed using a 34 X 42 mesh in the region 
CDEF (Figure 2). The plate AFi, which had no thickness was placed in the centre of the 
region and it occupied 7 elements in the x-direction. The boundary DE was placed 2 
boundary layer thicknesses away from AB. A uniform mesh of thickness 10 percent of the 
inflow boundary layer thickness was employed in the y -direction. In the x-direction the mesh 
was graded to ensure a good resolution of flow both in the near wake and in the far wake. 
The smallest grid was set at the trailing-edge where its thickness was 10 per cent of the 
inflow boundary layer thickness. The mesh was stretched geometrically in the positive x 
direction so that Ax,+JAx, = 1.3. This stretching was also carried out in the upstream 
direction from the trailing edge B. 

3.2. How past a backward-facing step 

This has become one of the benchmark flows involving separation and has received much 
attention in the The flow over the step separates downstream of the corner (B in 
Figure 3) and gives rise to a mixing layer between the separation bubble and the outer flow. 
Downstream of the bubble the flow reattaches. The length of the separation bubble, the 
extent of reattachment, the pressure distribution through reattachment are some of the 
features of importance. Here again both laminar and turbulent flows are considered (Figure 
3).  

A 1 
Figure 3. Boundary conditions and computational details for flow past a backward-facing step (not to scale) 



428 K. SRINIVAS AND C. A. J. FLETCHER 

3.2.1. Boundary conditions. The boundary conditions applied along AB, BC, CD, AE, EF 
(Figure 3) are similar to the ones applied along corresponding boundaries for the flat plate 
flow. The boundary conditions imposed along DF are that the first derivatives of u, z1 and p 
vanish at that boundary. This follows the conclusion of Fletcher' after experiments with a 
number of boundary conditions for the flow past a step. Such a condition is strictly not valid 
in boundary layer regions and was not imposed in the region adjacent to the wall, i.e. the two 
mesh points closest to the wall. 

3.2.2. Computational detuils. The mesh employed is shown in Figure 3.  34 X 42 elements 
were used with the step occupying 10 in both x and y directions. The boundary EF was 
placed three step heights away from AB. The mesh was uniform in the y direction, the mesh 
width being 10 per cent of the upstream boundary layer thickness. A variable mesh was used 
in the x direction with the smallest mesh ( = A y )  adjacent to the step. The mesh was 
stretched geometrically (mesh ratio= 1.3) up to about the rearward end of separation 
bubble. The region of the reattaching boundary layer had a uniform mesh (=upstream 
boundary layer thickness) followed by another region of geometrically stretched mesh (mesh 
ratio = 1-2). Such a mesh grading was necessary to ensure a good resolution of the flow 
features in the separating and the reattaching regions, without degrading the accuracy of the 
solution away from these regions, unnecessarily. The mesh was also stretched in the 
upstream direction from the corner B. 

3.3. Law of the wall 

A good resolution of turbulent flows near walls requires a very fine mesh because of large 
velocity gradients. This would demand a large number of elements thus contributing to 
greater memory and time requirements on the computer. One way of overcoming this 
problem is to employ a law of the wall;*' we have used this approach. Accordingly u 
components of velocity at nodes adjacent to horizontal walls in the two examples considered 
are forced to satisfy the universal velocity profiles for turbulent boundary layers. 

u+= Y+, O <  Y+<5  
U+ = (-3.0 + 5.0 In Y'), S < Y + < 3 0  
U + =  (-5-0+1n Y+/0.41), Y'>30 

where 

where UT = friction velocity, 7, = wall shear stress, v = kinematic viscosity, 
This procedure was not carried out in regions downstream of the corner, B in the flow past 

the backward-facing step. In fact, it is not clear whether the velocity profiles follow any 
universal law in these regions. 

4. RESULTS AND DISCUSSION 

4.1. Flow past a flat plate 

Some of the preliminary results for this flow were presented previ0us1y.l~ Comparable 
results, to be discussed here, have been obtained with a refined mesh. In addition, many 
new cases are included. 
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L A M I N A R  WAKE. S Y M M E T R I C  
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Figure 4. U-velocity profiles in laminar symmetric wake, M ,  = 0.4, BLT = boundary layer thickness at the 
trailing-edge 

4.1.1. Laminar Pow. Laminar flow past a flat plate was computed for a Reynolds number 
of 100 based on plate length. Computed u-velocity profiles at different locations downstream 
of the trailing-edge are given in Figure 4. The transformation of the boundary layer profile 
near the trailing-edge into a near wake profile and then its subsequent modification to a 
far-wake profile are well predicted. Self preservation of velocity profiles is one of the 
important properties of a wake, especially in the far-wake region. Figure 5 shows a plot of 
the velocity defect scaled to that at the centre-line varying with distance from the centre-line 
scaled to the half-wake width. Self preservation of the computational solution in the far wake 
region is clearly evident. 

The velocity profiles for the velocity asymmetric laminar wake (Table I) are given in 
Figure 6. It is observed that the wake profile close to the plate slowly modifies itself into a 
mixing layer type profile as the downstream boundary is approached. 

4.1.2. Turbulent flow. The turbulent flows were computed for a Reynolds number of lo6. 
Three flow cases, symmetric, velocity asymmetric and roughness asymmetric, were consi- 
dered. 
Symmetric wake : 

The computed mean velocity profiles are shown in Figure 7. As expected, it is observed 
that most of the changes in the near-wake occur in the inner region and the outer region 
remains relatively unaffected. It is only towards the far wake that the outer region begins to 
change and assume a wake-like character. Investigations by Viswanath et uZ.,~ though at a 
higher Reynolds number, i.e. 26.6 x lo6, provide a very good basis for comparison of the 
present results. Their investigations include experiments and computations with a k - W 2  

model for turbulence. Some of the mean velocity profiles in the near-wake region are 
compared in Figure 8 with those of Viswanath et at. 
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LAMINAR WAKE. SYMMETRIC 
RE= 10.02 

Figure 5. Self 
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preservation of laminar symmetric wake, UC/L = U-velocity on the centreline 
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Figure 6. U-velocity profiles in laminar asymmetric wake, M, = 0.4, BLT = boundary layer thickness (lower) at the 
trailing-edge 
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TURBULENT WAKE. SYMMETRIC 
RE-1 00.6 

X ( B L T )  = 0.0 0.2 1 - 2 7  12.6 68.1 392.1  

U/UI NF 

Figure 7. Mean U-velocity profiles in turbulent symmetric wake, M, = 0.4, BLT = boundary layer thickness at the 
trailing-edge 
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Figure 8. Comparison of velocity profiles in turbulent symmetric wake with those of Viswanath, et al?, X(MOh4) 
denotes distance from the trailing-edge measured in terms of momentum thickness at the trailing-edge 
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The present results agree very well with their experimental and computed results (com- 
puted results of Viswanath et al. are in very good agreement with those of their experiments) 
except for the profile at x/&, = 0.8, (where O0 = momentum thickness at the trailing edge). 
The disagreement is small in the outer layer but is considerable on the centre line. The 
magnitudes of mean velocities are 0-19 and about 0-3  in the present result and their result, 
respectively. The disagreement between the results at this specific location is probably 
explained by the differences in the geometries considered. We consider a flat plate of zero 
thickness whereas Viswanath et al. consider a 6.25" wedge. The effect of the wedge or flat 
plate is bound to be pronounced near the trailing-edge and should tend to vanish away from 
the trailing-edge. Further, the Reynolds numbers are different in the two cases under 
comparison. 

The mesh employed in the y-direction in the present studies could also contribute to this 
difference. The location x/O, = 0.8 is close to the trailing-edge of the plate where a boundary 
layer like flow prevails, and in this region we have used a coarser mesh than that used by 
Viswanath et al. For a good resolution in this region a fine mesh may be required in the 
y-direction. In the boundary layer region, however, the law of the wall was used to overcome 
the necessity of using a fine mesh. 

The investigations of Viswanath et al. cover only the near-wake region and to compare our 
results in the far-wake region, we consider the experimental results of Chevray and 
Kovasznay' which have been obtained at a Reynolds number of 1.5 x lo4 based on the 
boundary layer thickness (compared to 2.33 X lo4 in the present case). The magnitudes of 
mean velocities at xl0,  = 258 and 414 are 0-86 and 0.89 as against 0-83 and 0.89 measured 
by Chevray and Kovasznay. Thus we find that the present results are in substantial 
agreement with those measured or computed by others. 

Self preservation of the computed mean velocity profiles is checked in Figure 9. It is found 

T U R B U L E N T  UAKE. SYMMETRIC 
RE= 10*+6 
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Figure 9. Self preservation of velocity profiles in turbulent symmetric wake, M, = 0.4, UCiL = U-velocity on the 
centreline of the wake 
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TURBULENT WAKE. ASYMMETRIC 
RE= IOa.6 

X ( B L T ) =  0 .0  0 . 2  1 . 2 7  12 .6  68.1  392.1 

U/UINF 

Figure 10. Mean U-velocity profiles in turbulent asymmetric (velocity) wake, M, = 0.4, BLT = boundary layer 
thickness (lower) at the trailing edge 

that the profiles in the far wake do demonstrate self preservation except in the outer regions. 

Velocity asymmetry: 
The mean velocity profiles for the velocity asymmetric wake are given in Figure 10. As 

compared with the laminar asymmetric wake profiles, it is found that the modification of the 
far wake into a mixing layer is not complete. It is likely that proximity of the downstream 
boundary is contributing to this feature of the solution. 

Roughness asymmetry  : 
The roughness on the top surface of the plate was kept equal to twice that on the bottom 

surface of the plate. As a consequence of this the boundary layer thickness on the top surface 
increases by a factor of 1-4 and the universal velocity profile undergoes a shift by -llU,.” 
The computed mean velocity profiles are given in Figure 11. It is found that the profiles 
which are asymmetric close to the trailing edge tend to become symmetric in the far-wake 
regions, as might be expected. A comparison of the eddy viscosity profiles in the wake 
regions with those obtained experimentally by Andreopoulos and Bradshaw3 indicate a 
good qualitative agreement (profiles are not given in the present paper). 

Thus we find that the eddy viscosity models can indeed compute wake flows satisfactorily. 
The results obtained are in good agreement with those obtained using the k - o 2  model of 
turbulence and with experimental results. The adequacy of the eddy viscosity models to 
compute such flows has also been noted in Reference 3. The agreement of the present results 
with those of Viswanath et al. also indicates that the accuracy of time-split finite element 
method compares well with that of the widely used MacCormack scheme (employed by 
Viswanath et al.). However, the present results have been obtained with less than half the 
number of mesh points used by Viswanath et aL4 
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TURBULENT WAKE. ASYMMETRIC 
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Figure 11. Mean U-velocity profiles in turbulent asymmetric (roughness) wake, M, = 0.4, BLT= boundary layer 
thickness (lower) at the trailing-edge 

4.2. How past a backward-facing step 

4.2.1. Laminar flow. The laminar flow past a backward-facing step was computed at a 
step-height Reynolds number of 53.0. The ratio of the boundary layer thickness at the step 
to the height of the step, i.e. S/H was 1.0. The u velocity profiles at various locations 
downstream of the step are plotted in Figure 12. The length of the separation bubble is 3-5 
step-heights. This value is compared with those of previous investigators in Table 11. The 
present value of 3.5 agrees closely with the least-square fit of Goldstein et It may be 
pointed out that the least-square fit of Goldstein et al. takes into account the effect of the 
ratio of the step-height to the displacement thickness of the boundary layer. 

Figure 12 shows that a sub-boundary layer starts building up downstream of the separation 
bubble. The extent to which this reattachment is complete is indicated by the shape factor. 
The shape factors of the boundary layer profiles at the step and at the downstream boundary 
were 2.62 and 2.42, respectively, thus indicating closeness to complete reattachment. Figure 
13 gives the wall pressure distribution which we find to be in qualitative agreement with that 
given in Reference 7 for a step-height Reynolds number of 662. 

4.2.1. Turbulent flow. The turbulent flow past the backward-facing step was computed for 
a step-height Reynolds number of 2.3 x lo4, the ratio S/H being, again, equal to 1.0. This 
ratio corresponds to the ‘strong perturbation’ group according to the definition of Bradshaw 
and Wong.’ ‘Strong perturbation’ implies that the turbulence structure is significantly altered 
during the flow. 

We first discuss the wall pressure distribution and the maximum shear stress profile to be 
followed by a discussion of the mean velocity profiles. 

Figure 13 gives the wall pressure distribution for the turbulent flow as well. The profile is 
in qualitative agreement with those given by Chandrasuda and Bradshaw6 and Sinha et al? 
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Figure 12. U-velocity profiles for laminar flow past the backward-facing step, M,=O.4 

The peak pressure coefficient at reattachment is 0.32 which is in reasonable agreement with 
Chandrasuda and Bradshaw6 and with all of the computational results presented at the 
Stanford conference." 

The maximum shear stress values, given by E -+- , are plotted in Figure 14. As {:: 3 
noticed in experiments and other computations," the shear stress starts to decay well ahead 
of the reattachment point (a discussion of the reattachment region follows). All of the 
computations in Reference 18 report that near reattachment the maximum shear stress 
reaches values much greater than in experiments. In the computations reported here the 
value of maximum shear stress near reattachment is 14.0 X 
observed during experiments." The maximum shear stress value decays to about 8 X in 
about 5 step heights after reattachment whereas the corresponding value observed experi- 
mentally is S X ~ O - ~ .  The comparison of our computed shear stress values with those 

as against 11.0 x 

Table 11. Comparison of reattachment length for laminar 
flow, Re = 53 

Author X,/ H Remarks 

Leal and Acrivos" 7 
Goldstein, et all3 3.2 from their least 

square fit 
Mueller and OLeary" 4.5 
Sinha, et d7 5.0 extrapolated 
Present 3.5 

*The values of X J H  are taken from the graphs presented in 
Reference 7 and these references are not listed in the present 
paper. X,= reattachment length. 
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Figure 13. Wall pressure distribution 

observed experimentally should be taken in a qualitative sense only because of the differ- 
ences in Reynolds number and step-height to  boundary layer thickness ratio of the computed 
and experimental cases. 

Computed mean velocity profiles for various locations are given in Figure 15. Compared 
with the situation for laminar flow, reverse flow in the separated region is quite pronounced. 
The maximum reverse velocity is 0-253 of the free stream velocity and this value compares 

TURBULENT F L O W  

?!, N 

0.00 4.00 8.00 12.00 16.00 20.00 24.00 
X/H 

Figure 14. Distribution of maximum shear stress 
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Figure 15. Mean U-velocity profiles for turbulent flow past the backward-facing step, M,= 0.4 

well with the value of 0.28 given by Sinha et aL7 The length of the separation bubble is 
found to be 5 - 5  step-heights. This is compared in Table I11 with the experimental values 
reported in the literature. Most of the modern measurements indicate a bubble length of 5 to 
6 step-heights. 

A recent study by Durst and Tropeal' shows that the bubble length is strongly dependent 
on the expansion ratio (DF/AE in Figure 3) and Reynolds number, especially for channel 
flows (Table 111). Their results indicate that for a step-height Reynolds number of 2.3 X lo4 
(considered in the present study) and an expansion ratio of 1-14 (as against 1.0 in the present 
study) the bubble length is 5.2 step-heights. Other studies employing an expansion ratio of 
1-0 have found the bubble length to be 4.5 and 5-2 step-heights (see Table 111). Considering 
these, the bubble length obtained in the present studies, i.e. 5.5,  seems quite reasonable. 

Table 111. Comparison of reattachment length for turbulent flow 
past the backward-facing step. 

Author E R  Re,x104 XJH 

Tani, et al.* 1.01-11 0.3-11 7 
Mohsen* 1.0 0.33 4.5 
Wauschkuhn and Vasata Ram* 1.0 2.6-9.7 5.2 
Chandrasuda" 1.65 10 5.85 
Eaton and Johnston* 1.67 1.1-6.2 8.0 
Durst and TropeaI9 1.14-2.0 0.2-3.0 5.2-8.5 
Sinha, et aL7 1.02-1.09 0.06-0.26 6.0 
Present 1.0 2.3 5.5 

* X J H  values are taken from the table presented in Reference 19 and the 
references are not listed in the present paper. ER=expansion ratio= 
DF/AE in Figure 3. Re, is step height Reynolds number. 
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Many of the computations reported in Reference 18 use differential equation models of 
turbulence and predict a bubble length of 5 to 6 step-heights for an expansion ratio of 1-5 
and a step-height Reynolds number of 4 x lo4. This is an underprediction of the experimen- 
tal value of 7 for these conditions. 

To determine the effect of reducing eddy viscosity in the separated region the following 
formula was used in place of (17) 

Ei= ‘!humax s*C(Y/YdDI* (28) 

It was found that the reduced eddy viscosity gave a slightly shorter bubble length (about 5 
step-heights) and produced an unrealistic maximum reverse velocity of 0.410 at the rearward 
end of the bubble. 

Reattachment of flow downstream of the separation bubble is another important feature of 
the flow considered. Results shown in Figure 15 correspond to a reattachment with a 
maximum skin friction coefficient of upstream of the step. The 
corresponding shape factors were 1.37 and 1.92. The velocity profiles after reattachment are 
not predicted accurately. Such an observation has also been made by Horstman et al?’ in 
their investigations of the flow past an aerofoil. The k - o 2  model, though better than the 
eddy viscosity models in this respect, is not very accurate either.’l 

Some improvement in predictions downstream of the separation bubble was achieved21 by 
arbitrarily increasing the length scale of turbulence in the k-o2 model. A similar attempt 
was made in the present studies by increasing the length scale arbitrarily in the outer layers 
after reattachment. The predictions of wall friction did improve considerably but the wall 
pressures calculated were not physically consistent with those of other parts of the flow field. 

The reasons for the dubious behaviour of the eddy viscosity model after reattachment are 
not hard to find. The paper by Chandrasuda and Bradshaw6 gives a clear description of the 
phenomenon of reattachment. The reattachment is characterized by the transport of turbul- 
ent energy and shear stress towards the surface, a large pressure strain term in the shear 
transport equation and dissipation and consequently a substantial decrease in shear stress 
and turbulent intensity downstream of reattachment. Clearly, such complex interactions are 
outside the scope of eddy viscosity models. 

as against 3 X 

5. CONCLUSIONS 

The time-split finite element method has been used to compute typical laminar and turbulent 
flows with and without separation. The examples considered were the flow past the trailing 
edge of a flat plate and the flow past a backward-facing step. Since the emphasis is mainly on 
gross features of the flow, eddy viscosity models have been used to model the effects of 
turbulence. 

The method was found to compute the considered flows satisfactorily. One of the main 
questions under investigation was the suitability of eddy viscosity models to handle such 
flows. The results obtained for the flat plate flow are in very good agreement with those of 
others employing k-a’ models of turbulence and with experimentally obtained results. For 
the flow past a backward-facing step results obtained using eddy viscosity models are 
accurate in all regions except downstream of reattachment. In this region the present 
computations underpredict skin friction but give an accurate prediction of the surface 
pressure distribution. The study therefore indicates that eddy viscosity models are effective 
except when details of the reattaching flow are important. 
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